NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra

Yousef Bozorgnia, & Kenneth W. Campbell

Published August 2014, SCEC Contribution #8861

We used an expanded PEER NGA-West2 database to develop a new ground motion prediction equation (GMPE) for the average horizontal components of PGA, PGV, and 5% damped linear pseudo-absolute acceleration response spectra at 21 periods ranging from 0.01 s to 10 s. In addition to those terms included in our now superseded 2008 GMPE, we include a more-detailed hanging wall model, scaling with hypocentral depth and fault dip, regionally independent geometric attenuation, regionally dependent anelastic attenuation and site conditions, and magnitude-dependent aleatory variability. The NGA-West2 database provides better constraints on magnitude scaling and attenuation of small-magnitude earthquakes, where our 2008 GMPE was known to be biased. We consider our new GMPE to be valid for estimating horizontal ground motion from shallow crustal continental earthquakes in an active tectonic domain for rupture distances ranging from 0 km to 300 km and magnitudes ranging from 3.3 to 7.5–8.5, depending on source mechanism.

Citation
Bozorgnia, Y., & Campbell, K. W. (2014). NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra, 30(3), 1087-1115. doi: 10.1193/062913EQS175M.